ai (2) cmake (1) cmakelists (1) dataset (3) fillPoly (1) ipp (1) masking (1) object_detection (2) oneapi (1) opencv (2) polygon (1) python (1) pytorch (2) semantic_segmentaiton (1) test (1) training (2) yolov5 (2)

 ai (2)

Training the Model by using google vegetable images
Training the Model by using fruits and vegetable open dataset

 cmake (1)

Install Intel oneAPI base toolkit on Ubuntu 20.04 and Build with CMake

 cmakelists (1)

Install Intel oneAPI base toolkit on Ubuntu 20.04 and Build with CMake

 dataset (3)

Do Masking for Semantic Segmentation
Training the Model by using google vegetable images
Training the Model by using fruits and vegetable open dataset

 fillPoly (1)

Do Masking for Semantic Segmentation

 ipp (1)

Install Intel oneAPI base toolkit on Ubuntu 20.04 and Build with CMake

 masking (1)

Do Masking for Semantic Segmentation

 object_detection (2)

Training the Model by using google vegetable images
Training the Model by using fruits and vegetable open dataset

 oneapi (1)

Install Intel oneAPI base toolkit on Ubuntu 20.04 and Build with CMake

 opencv (2)

Install Intel oneAPI base toolkit on Ubuntu 20.04 and Build with CMake
Do Masking for Semantic Segmentation

 polygon (1)

Do Masking for Semantic Segmentation

 python (1)

Do Masking for Semantic Segmentation

 pytorch (2)

Training the Model by using google vegetable images
Training the Model by using fruits and vegetable open dataset

 semantic_segmentaiton (1)

Do Masking for Semantic Segmentation

 test (1)

Sample blog post

 training (2)

Training the Model by using google vegetable images
Training the Model by using fruits and vegetable open dataset

 yolov5 (2)

Training the Model by using google vegetable images
Training the Model by using fruits and vegetable open dataset